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Abstract

A generalization of previous treatments

tics are thereby removed, thus permitting
"phase wavefunction collapse" (and other
advantages). This is accomplished by ex-
citing the auxilary mode of the measure-
ment apparatus in a time-reversed fashion.
The mathematical properties of this aux-
ilary mode are studied in the hope that
they will lead to an identification of a
physical apparatus which can realize the
quantum phase measurement.

1. The SG phase statistics

A satisfactory description of the phase
of the quantmn harmonic oscillator has
recently been achieved by considering
the realizable measurement[ 1] of the non-
Hermitian Susskind-Glogower(SG) phase

operator[2]

£i"_ __ (_ Jr 1)-1/2ao (1)

Although it is not Hermitian, the SG
operator does correspond to a realizable
quantum measurement. It'smeasure-
ment statistics,however, can not be cal-
culatedfrom the familiarHermitianoper-
ator rules(e.g. moments calculatedvia

(_[(¢_)#t_),k = 1,2,... do not corre-
spond to the SG operator's realizable mea-
surement statistics). We have demon-
strated a variety of ways in which the mea-
surement statistics of the SG operator can
be accessed [fl,[a]. Perhaps the simplest of
these is to form the phase wavefunction

from which the phase probability distri-

bution, p(@) -- i¢,(&)l_/2_ ", and it's associ-
ated moments follow directly. This procee-
dure is justified formally by the fact that
the infinite energy eigenkets of the SG op-

erator
oo

I¢) = (3)
.=0

resolvethe identity, i.e. 1 = f', _[_)(_l.
This permits the extremely useful phase
representationof an arbitraryquantum
state:

analogous to the familiarnumber repre-
sentationof a state:

oo

I,¢,)= Z (5)
n=O

The number-ket expansion coefficients,
¢', = (nil'l, may be viewed as a wave-
function in discrete n-space. The Fourier
transform relationship of the number and
phase wavefunctions

c_

= Z (6)
n=0

,r 2_"

demonstratesthe complementarity ofpho-
ton nmnber and quantum phase.

Position and momentum are famil-

iar examples of complementaxy quanti-
ties, whose wavefunction representations,
¢(=)-- (_I¢) and @(p) - (vl_), are
also related via Fourier transform. In-
deed, several relations among _/,, and _b(_)
are reminiscient of those encountered in

Schrodinger's wave mechanics. Analogous
to the position representation of the mo-

mentum operator,/_ _ -ih_, for exam-
ph, we have a phase representation of the
nmnber operator, _ • d-, =_, viz:

= (8)

L (9)
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(where k = 0, 1,2_.). These relations yield
the correct form of the number/phase un-

certainty principle[S]:

>_¼(I- (10)

Since we are dealing with a singIe har-
monlc oscillator (of frequency _0), phase
is related to time (_b = wt) in a mod-2r
sense, and number is directly related to en-

ergy (h = f//tu_ - 1/2). In this sense, the
above constitutes a rigorous energy/time
uncertainty principle for the qua_atu.m har-
monic oscillator.

The class of realizable SG phase statis-
tics, however, is restricted (by a Paley-
Wiener theorem) due tothefactthat_,(_)
isa one-sidedFourierseries,i.e.thisre-

strictionstems from theabsenceof"nega-
tivenumber states"(@,_= 0 Vn < 0).One
aspectof thisrestrictionisthat ¢,(_)is
prohibitedfrom identicalyvanishingover
a non-zero interval m thus, delta-functions
in phase are not allowed. In as much as we
may desire a "wavefunction collapse" view
of a phase measurement, the SG statis-
tics appear to be incomplete. This dihma,
however, can be resolved by generalizing
an alternate route (the product space for-
realism) to the SG statistics.

Fundamental to the realizable measure-
ment of any non-Hermitian operator is
the existance of an auzilary noise source.
Zero-point fluctuations from this auxi-
larymode prevent a simultaneous, per-
fectlyprecise,measurement of the non-
commuting realand imaginarypartsofthe
non-Herntitian operator (so that the un-
certainty principle is not violated). We
can study the interaction of our original
system of interest (Kilbert space _fo) with
this auxilary system (Hilbert space _,)
by working in the product space 7f =
7"/, ® ?f°. The ezte_ion of the SG op-
erator onto 7_ is [31

where P -_- 10)(01. This extension
has eigenkets (of non-zero eigenvalue),

f'l_>' = ei_l_)', given by

OO

I¢>'=10)ol0>.+ (12)

Oo

+ (13)
t't.e _|

These reside on a subset, 7f', of?f which is
defined by the property n,n, = 0. When
the auxilary mode is in the vacuum state

,,= 0), the _ measurement yields thestatistics and their attendant Paley-
Wiener restriction.

2. Beyond the SG statistiea

We can go be!tond the $G statistics by
exciting the au.x.ilary mode to create an
arbitrary state on 7f':

I_/'= _ _bno,Oln°>.lO)° (14)
rl, m --0

Oo

+
na=l

(15)

For simplicity, let N - n, -n,, V:N =
¢,iv.0(VN > 0), and ¢'N = V:o.-N (VN <
0). The generalized phase wavefunction,

_:Ne-iN_, (16)

is a two-sided Fourier series. The the
Paley.Wiener restriction is removed and
¢'(_) can "collapse" to a delta-function.
The fact that the class of _b'(_) is more
general than (and includes) the class of
¢,(_) should prove useful for various opti-

mizations. Indeed, Shapiro[ 4] has pointed
out that error-free communication could
in principle be achieved by exploiting the
newly aquired generality described herein.

Provided that tLiether of our two modes
is purely in the vacuum state, the ex-
citation which creates a state on 7/' is

not arbitrary in that the n,n, = 0 prop-
erty creates an entanglement. Thus, in
general, the original system and au.xilary
modes are not statistically independent

on 7/', i.e. 1¢,)' _ ]_b,),lT/,.),. Denot-
ing the probability that a measurement
of h, yields the outcome n by I '.1 we

see that I_b_l== I_b,_,ol=(¥n > 1), whereas

I#: 12- t :o,ol2+ :C =a1%,.1=(similarly for



I¢_1_). In spite of the lack of statistical
independence, we can therefore assign any
individual probability distributions for n,
and n_ that we wish, provided that

(,¢,o,ol2 -- (1¢,_l2+ ICgl2 - 1) > 0 (17)

is satisfied.

The auxilary mode can be interpreted
as a time-reversed mode in the following
sense. Consider the case of the auxilary
mode being in the vacuum state (nQ = 0).

Denote the initial state by I¢0)'. The
state (in the Schrodinger picture) after
time evolution of an amount r is

Lg'_)'-- e-_°_l¢0)', (18)

so that the relation of the phase represen-
tations of the initial and delayed states is
simply

¢.2(¢) : ¢'o(_,+,,,,-) (no = o). (19)

Now consider the case of the original sys-
tem being in the vacuum state (n, = 0).
The Schrodinger picture of the delayed
version of an initial state I_b0) I is

{¢,-)' = e-"_*"l,;,o) '. (20)

The initial and delayed phase representa-
tions for this case are related by

_,'_(¢)=_'o(_-_)(,_,=0). (21)

Thus the two modes are time-reversed in

that, under time evolution, the na _> I

portion ofthe generalized phase wavefunc-

tion "moves backwards" with respect to
the ns > 1 portion.

Consistent with the time-reversal prop-
erty, the auxilary mode serves the topo-
logical role of a "negative energy" mode in
Hilbert space. The SG operator is a pure
lowering operator which stops at the vac-
uu.nl_

e':¢in>=ln-1) (n> 1) (22)

ei¢lO ) = O. (23)

It cannot lower below the vacuum since we

have not allowed negative number (nega-
tive energy) states for the quantum har-

monic oscillator. It's extension, Y, how-

ever, lowers the original system mode
number

91n.),tO),_= In.-1),lO),_ (n, _>1), (24)

then continues through the vacumn

?10).10)o = 10),rl)o, (25)

and raises the auxilary mode number

?lO),ln,,>,, = IO),ln,,+ 1>,. (26)

Topologicaly, it is as ifY continues to lower

below the vacuum into the auxilary ("neg-
ative energy") mode. The visualization of
this behavioral aspect can be facilitated

by simply relabeling the 7-(' number states

according to the value of N __ n° - n_.

The auxilary mode has to be an irrevo-
cable part of the physical apparatus which
realizes the quantum phase measurement
(so that the uncertainty principle is sat-
isfied and so that the phase wavefunction
can collapse). All of the aforementioned
mathematical properties must be physi-
caly realized in the measurement appara-
tus. These restrictions should prove useful
in determining an apparatus which will re-
alize the quantum phase measurement.
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